Similar damage initiation but different failure behavior in trabecular and cortical bone tissue.

نویسندگان

  • M E Szabó
  • J Zekonyte
  • O L Katsamenis
  • M Taylor
  • P J Thurner
چکیده

The mechanical properties of bone tissue are reflected in its micro- and nanostructure as well as in its composition. Numerous studies have compared the elastic mechanical properties of cortical and trabecular bone tissue and concluded that cortical bone tissue is stiffer than trabecular bone tissue. This study compared the progression of microdamage leading to fracture and the related local strains during this process in trabecular and cortical bone tissue. Unmachined single bovine trabeculae and similarly-sized cortical bovine bone samples were mechanically tested in three-point bending and concomitantly imaged to assess local strains using a digital image correlation technique. The bone whitening effect was used to detect microdamage formation and propagation. This study found that cortical bone tissue exhibits significantly lower maximum strains (trabecular 36.6%±14% vs. cortical 22.9%±7.4%) and less accumulated damage (trabecular 16100±8800 pix/mm2 vs. cortical 8000±3400 pix/mm2) at failure. However, no difference was detected for the maximum local strain at whitening onset (trabecular 5.8%±2.6% vs. cortical 7.2%±3.1%). The differences in elastic modulus and mineral distribution in the two tissues were investigated, using nanoindentation and micro-Raman imaging, to explain the different mechanical properties found. While cortical bone was found to be overall stiffer and more highly mineralized, no apparent differences were noted in the distribution of modulus values or mineral density along the specimen diameter. Therefore, differences in the mechanical behavior of trabecular and cortical bone tissue are likely to be in large part due to microstructural (i.e. orientation and distribution of cement lines) and collagen related compositional differences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similar Damage Initiation but Different Failure Behavior in Trabecular and Cortical Bone Tissue

INTRODUCTION: The mechanical function of bone tissue is reflected in its microand nanostructure as well as in its composition. Numerous studies have compared the elastic mechanical properties of cortical and trabecular bone tissue and concluded that cortical bone tissue is stiffer than trabecular bone tissue [1]. However, the progression of microdamage leading to fracture and the related local ...

متن کامل

Macrodamage Accumulation Model for a Human Femur

The objective of this study was to more fully understand the mechanical behavior of bone tissue that is important to find an alternative material to be used as an implant and to develop an accurate model to predict the fracture of the bone. Predicting and preventing bone failure is an important area in orthopaedics. In this paper, the macrodamage accumulation models in the bone tissue have been...

متن کامل

A comparison of the fatigue behavior of human trabecular and cortical bone tissue.

The fatigue properties of trabecular bone tissue (single trabeculae) and similarly sized cortical bone specimens from human tibia were experimentally determined on a microstructural level using four-point bending cyclic tests, and they were compared based on modulus, mineral density, and microstructural characteristics. The results showed that trabecular specimens had significantly lower moduli...

متن کامل

(micro-CT) imaging, and voxel-based finite element modeling to detect trabecular bone microdamage and microfracture and estimate the associated microstructural stresses and strains. METHODS Cylindrical reduced-section specimens were prepared from skeletally mature bovine proximal tibial trabecular bone

INTRODUCTION The onset of trabecular bone damage is a local phenomenon, governed by tissue-level material properties, and architecture at the initiation site. Different modes of microfracture (bending, buckling, and shearing) and microdamage (single, parallel, and cross-hatched cracks) can occur [1]. The initiation of bone damage can lead to two scenarios. In the first case, normal repair proce...

متن کامل

Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods.

Trabecular plates play an important role in determining elastic moduli of trabecular bone. However, the relative contribution of trabecular plates and rods to strength behavior is still not clear. In this study, individual trabeculae segmentation (ITS) and nonlinear finite element (FE) analyses were used to evaluate the roles of trabecular types and orientations in the failure initiation and pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the mechanical behavior of biomedical materials

دوره 4 8  شماره 

صفحات  -

تاریخ انتشار 2011